Spatiotemporal estimation of PM<sub>2.5</sub> using attention-based deep neural network

نویسندگان

چکیده

PM2.5ä½œä¸ºæŒ‡ç¤ºçŽ¯å¢ƒè´¨é‡çš„é‡è¦å› å­ä¹‹ä¸€ï¼Œä¸ä» å½±å“ç€ç°éœ¾å¤©æ°”çš„å‘ç”Ÿï¼Œè¿˜ä¸Žå ¬ä¼—å¥åº·æ¯æ¯ç›¸å ³ï¼Œè¿‘å¹´æ¥å—åˆ°å¹¿æ³›çš„å ³æ³¨ã€‚å°½ç®¡PM2.5åœ°é¢è§‚æµ‹ç«™ç‚¹åœ¨ä¸æ–­åœ°æ‰©å¼ ï¼Œå ¶è¦†ç›–èŒƒå›´ä¾æ—§æœ‰é™ï¼Œéš¾ä»¥åæ˜ å ¨åŸŸPM2.5æµ“åº¦çš„æ—¶ç©ºå¼‚è´¨æ€§ã€‚æœ¬ç ”ç©¶è¿ç”¨å«æ˜Ÿé¥æ„Ÿæ°”æº¶èƒ¶å ‰å­¦åŽšåº¦æ•°æ®ï¼Œè¾ åŠ©å› å­é™¤å¸¸è§„çš„æ°”è±¡å› å­ç­‰ä»¥å¤–ï¼Œè¿˜åŠ ¥äº†é’ˆå¯¹ä¸­å›½äººæ°‘ç”Ÿäº§ç”Ÿæ´»ä¹ æƒ¯çš„å†œåŽ†æ—¥å› å­ï¼Œæå‡ºä¸€ç§è€¦åˆæ³¨æ„åŠ›æœºåˆ¶çš„æ·±åº¦ç¥žç»ç½‘ç»œæ¨¡åž‹ï¼Œå¯¹é•¿ä¸‰è§’åŒºåŸŸ2015年—2020å¹´PM2.5浓度进行了逐日的高精度估算。模型交叉验证结果显示决定系数R2高达0.85,斜率0.86ï¼Œä¸Žåœ°é¢ç«™ç‚¹è§‚æµ‹å€¼æœ‰è¾ƒé«˜çš„ä¸€è‡´æ€§ï¼Œä¼˜äºŽå¤šå ƒçº¿æ€§å›žå½’å’Œéšæœºæ£®æž—æ¨¡åž‹ã€‚é•¿ä¸‰è§’åŒºåŸŸPM2.5浓度时空特征分析结果表明,PM2.5浓度在空间上呈现北高南低的趋势;季节特征以冬季浓度最高,夏季浓度最低,春秋过渡。此外,长三角区域2015年—2020年整体PM2.5æµ“åº¦å‘ˆä¸‹é™è¶‹åŠ¿ï¼Œå ¶ä¸­ä»¥ä¸Šæµ·å¸‚æœ€ä¸ºæ˜Žæ˜¾ï¼Œä¸‹é™é€ŸçŽ‡ä¸º3.30 μg/(m3·aï¼‰ï¼Œå ¶æ¬¡ä¸ºæ±Ÿè‹çœï¼ˆ2.65 μg/(m3·a));浙江省与安徽省下降速率都小于2 μg/(m3·a),但由于安徽省PM2.5æµ“åº¦è¿œé«˜äºŽæµ™æ±Ÿçœï¼Œæå‡ç©ºé—´æ›´å¤§ï¼Œéœ€è¦æ›´å¤šçš„å ³æ³¨ã€‚ç»¼ä¸Šæ‰€è¿°ï¼Œåˆ©ç”¨å«æ˜Ÿæ•°æ®ç»“åˆæœ¬ç ”ç©¶æå‡ºçš„æ–¹æ³•èƒ½å¼¥è¡¥åœ°é¢è§‚æµ‹ç«™ç‚¹çš„ä¸è¶³ï¼ŒèŽ·å¾—é«˜ç²¾åº¦å ¨åŸŸPM2.5æµ“åº¦æ—¶ç©ºåˆ†å¸ƒç‰¹å¾ï¼Œä»Žè€Œæ›´ç§‘å­¦åœ°æŒ‡å¯¼ç›¸å ³æ”¿ç­–çš„è§„åˆ’ä¸Žè½åœ°ã€‚

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20221362